CETIFICATION

SDG No:

FA35362

Site:

BMSMC - Building 5 Area

Humacao, PR

Laboratory:

Accutest, Florida

Matrix:

Groundwater

SUMMARY:

Samples (Table 1) were collected on the BRSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken June 27-July 12, 2016 and were analyzed in Accutest, Florida that reported the data under SDG No.: FA35362. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
FA35362-1	OSGP1-GWS	Groundwater	VOA TCL List*
FA35362-2	OSGP1-GWD	Groundwater	VOA TCL List*
FA35362-3	OSGP2-GWS	Groundwater	VOA TCL List*
FA35362-4	OSGP7-GWD	Groundwater	VOA TCL List*
FA35362-5	BPEB-8	AQ - Equipment Blank	VOA TCL List*
FA35362-6	BPEB-6	AQ - Equipment Blank	VOA TCL List*
FA35362-7	BPEB-7	AQ - Equipment Blank	VOA TCL List*
FA35362-8	TB071216	AQ - Trip Blank Water	VOA TCL List*

rifael hi

Ménuez

1591664

Benzene, Methyl Tert Butyl Ether, Tert-Amyl Alcohol

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

July 23, 2016

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP1-GWS
Lab Sample ID:	FA35362-1
N. Co. A. Const.	40 0 111

AQ - Ground Water SW846_8260C

DF

1 1

Date Sampled: 07/08/16 Date Received: 07/13/16 Percent Solids: n/a

Matrix: Method: Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed Ву Prep Date Prep Batch **Analytical Batch** 07/14/16 DP VJ5371 n/a n/a

Run #1 Run #2

		Purge	Volume,
Run	#1	5.0 ml	

File ID

J0978032.D

Run #2

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 1634-04-4 75-85-4	Benzene Methyl Tert Butyl Ether Tert-Amyl Alcohol	ND 10.1 ND	1.0 1.0 20	0.20 0.20 6.0	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 107% 102% 109%		79-1 85-1	18% 25% 12% 18%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Run #1

2037-26-5

460-00-4

Report of Analysis

Page 1 of 1

Client Sample ID: OSGP1-GWD Lab Sample ID: FA35362-2 Date Sampled: 07/08/16 Matrix: AQ - Ground Water Date Received: 07/13/16 Method: SW846 8260C Percent Solids: n/a

Project: BMSMC, Building 5 Area, Humacao, PR

Purge Volume

Toluene-D8

4-Bromofluorobenzene

5.0 ml

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 J0978033.D 1 07/14/16 DP n/a n/a VJ5371 Run #2

Run #2 CAS No. Compound Result RL MDL Units Q 71-43-2 Benzene 0.281.0 0.20 ug/l J 1634-04-4 Methyl Tert Butyl Ether 9.4 1.0 0.20 ug/l 75-85-4 Tert-Amyl Alcohol ND 20 6.0ug/l CAS No. Surrogate Recoveries Run#1 Run#2 Limits 1868-53-7 Dibromofluoromethane 102% 83-118% 17060-07-0 1,2-Dichloroethane-D4 104% 79-125%

101%

109%

85-112%

83-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST

Report of Analysis

Page 1 of 1

Client Sample ID: Lab Sample ID; Matrix;	OSGP2-GWS
Lab Sample ID:	FA35362-3
Matrix:	AQ - Ground W

Vater SW846 8260C

DF

1

Date Sampled: 07/11/16 Date Received: 07/13/16 Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, Humacao, PR

Prep Batch Analytical Batch

Run #1 Run #2

File ID

J0978034.D

Analyzed Ву 07/14/16 DP Prep Date n/a

n/a

VJ5371

Purge Volume Run #1 $5.0 \, ml$

Run #2

CAS No.	Compound	Result	RL	MDL	Units
71-43-2	Benzene	ND	1.0	0.20	ug/l
1634-04-4	Methyl Tert Butyl Ether	6.8	1.0	0.20	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l

75-85-4	Tert-Amyl Alcohol	ND	20	6.0 1	ug/I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	i
1868-53-7	Dibromofluoromethane	102%		83-118	%
17060-07-0	1,2-Dichloroethane-D4	108%		79-125	%
2037-26-5	Toluene-D8	102%		85-112	%
460-00-4	4-Bromofluorobenzene	110%		83-118	%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID:	OSGP7-GWD
Lab Sample ID: Matrix:	FA35362-4
Matrix:	AQ - Ground W

Methyl Tert Butyl Ether

AQ - Ground Water SW846 8260C

Date Sampled: 07/11/16 Date Received: 07/13/16 Percent Solids: n/a

Method: Project:

1634-04-4

BMSMC, Building 5 Area, Humacao, PR

							
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	J0978035.D	1	07/14/16	DP	n/a	n/a	VJ5371
Run #2							

Run #1 Run #2	Purge Volume 5.0 ml						
CAS No.	Compound	Result	RL	MDL	Units	Q	
71-43-2	Benzene	ND	1.0	0.20	ug/l		

1.0

0.20

ug/l

ug/l

75-85-4	Tert-Amyl Alcohol	ND	20	6.0 ug/	4
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	102%		83-118%	
17060-07-0	1,2-Dichloroethane-D4	107%		79-125%	
2037-26-5	Toluene-D8	104%		85-112%	
460-00-4	4-Bromofluorobenzene	112%		83-118%	

ND

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: BPEB-8 Lab Sample ID:

FA35362-5

AQ - Equipment Blank SW846 8260C

07/12/16 Date Sampled: Date Received: 07/13/16

Q

Matrix: Method:

BMSMC, Building 5 Area, Humacao, PR

Percent Solids: n/a

Project:

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 J0978036.D 1 07/14/16 DP n/a n/a VJ5371 Run #2

Purge Volume

5.0 ml

Run #1 Run #2

CAS No. Compound Result RL MDL Units 71-43-2 Benzene ND 1.0 0.20 ug/l 1634-04-4 Methyl Tert Butyl Ether ND 1.0 0.20 ug/l 75-85-4 Tert-Amyl Alcohol ND 20 6.0 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits Dibromofluoromethane 1868-53-7 101% 83-118% 17060-07-0 1,2-Dichloroethane-D4 109% 79-125% 2037-26-5 Toluene-D8 100% 85-112% 460-00-4 4-Bromofluorobenzene 113% 83-118%

Méndez

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

I = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Ву

DP

Prep Date

n/a

Page 1 of 1

Client	Sample ID:	BPEB-6
Tabe	ammla III	EA25265

File ID

5.0 ml

J0978037.D

FA35362-6

Date Sampled: 07/08/16 Date Received: 07/13/16

Matrix: Method:

AQ - Equipment Blank SW846 8260C

DF

1

Percent Solids: n/a

n/a

Project:

BMSMC, Building 5 Area, Humacao, PR

Analyzed

07/14/16

Prep Batch **Analytical Batch**

VJ5371

Run #1

Run #1

Run #2

Purge	Volume

Run #2

Kull #2						
CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 1634-04-4	Benzene Methyl Tert Butyl Ether	ND ND	1.0 1.0	0.20 0.20	ug/l ug/l	
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l	

75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	S
1868-53-7	Dibromofluoromethane	101%		83-11	8%
17060-07-0	1,2-Dichloroethane-D4	109%		79-12	5%
2037-26-5	Toluene-D8	103%		85-11	2%
460-00-4	4-Bromofluorobenzene	112%		83-11	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

	Sample ID:	BPEB-7
Lah Si	ample ID:	FA35362

Matrix:

FA35362-7 AQ - Equipment Blank

Method: SW846 8260C Project:

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 07/11/16 Date Received: 07/13/16

Percent Solids: n/a

Run #1 J0978038.D 1 07/14/16 DP n/a n/a VJ5371 Run #2	1	File ID J0978038.D	DF 1	Analyzed 07/14/16	Ву	Prep Date n/a	Prep Batch n/a	Analytical Batch VJ5371
--	---	-----------------------	---------	----------------------	----	------------------	-------------------	----------------------------

Run #1 Run #2	Purge Volume 5.0 ml							
CAS No.	Compound	Result	RL	MDL	Units	Q		
	_				**			

71-43-2	Benzene	ND	1.0	0.20	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/f
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	s
1868-53-7	Dibromofluoromethane	100%		83-11	8%
17060-07-0	1,2-Dichloroethane-D4	109%		79-12	5%
2037-26-5	Toluene-D8	102%		85-11	2%
460-00-4	4-Bromofluorobenzene	110%		83-11	8%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Clic	nt Sample II): [
Lab	Sample ID:	1

TB071216 FA35362-8

Matrix:

AQ - Trip Blank Water

SW846 8260C

BMSMC, Building 5 Area, Humacao, PR

Date Sampled: 06/27/16

Date Received: 07/13/16

Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
	J0978039.D	1	07/14/16	DP	n/a	n/a	VJ5371
Run #2							

Kun #2

Method:

Project:

Purge Volume 5.0 ml

Run #1 Run #2

CAS No.	Compound	Result	RL	MDL	Units
71-43-2	Benzene	ND	1.0	0.20	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.20	ug/l
75-85-4	Tert-Amyl Alcohol	ND	20	6.0	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		83-118%
17060-07-0	1,2-Dichloroethane-D4	111%		79-125%
2037-26-5	Toluene-D8	103%		85-112%
460-00-4	4-Bromofluorobenzene	112%		83-118%

(a) Sample received outside the holding time.

N = Indicates presumptive evidence of a compound

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

ACCUTEST:			CHAI			•							80	1996	3	5	3		<u>ل</u>			<u>/</u>	of <u>/</u>
FL			TEL 40	425-670	0 FAX	407-425		[221]				1		Quan #	-	-	101	240	56	L		41.5	
Client / Reporting Information	124		Project	_	tion	200	LA		NO.	N/A	3,40	朝	ŽE.	Requi	ested .	Armsty	nia (n	ee TES				館	Museta Co
Arriany Hasto	Project Name:												3										DW - Director
Indiamon Muholiand & Associates	BRISMC Phas	e 2A Rolenso	Accustoment		All the same	2516.9	state.	36.00	world	nine a	TEN S		N N			- 1							GW - Greund
799 Westchester Avenue, Suite 417				Billion I	-		armed i	rum S		-			tert-Amyt Ale			- 1				1			SW - Surface SO - Se
Nr 30	OF.		Sein	Carper	Pales	213 00		-	-	-		\neg	Ž.			i							SL-Shell
urchase MY 10677	Humacao Proposi		PR	Throat A.	Street		_					_	end to				- 1						DI - DI
Turry Taylor	026												ă ař				- 1						AR-A
Topos di Fag di	Chiri Puthus	Circler#		100			-	-			Zip		MTBE.										SOL-Own
914-251-8400 Invariant Name 1	Project Manager			Alberton					-			-	į l										ES-Equipment RS-Pires (
N. Rivers, R. Stuert, R. O'Relby, T. Taylor	Terry Taylor			1									Benzane,										19-Tra B
			0	-			H	Physics,	e el p	7	fielden.					- 1	- 1			1			
Fleid ID / Point of Collection 14371	MECHENAMO	Date	Time	-	-	e of Lastin	. 👨	ğ 15	ğ		METON		\$260G; DALY										LAB USE
I OSGPI GWS		7 8-1	1045	TT	GW	1	3		П			П	Х										
2 -00CM - GWD 0568-6	WD	7-9-16	1400	14	GW	1	3		П	T	П	П	X										
3 08GPZ - GWS		7-11-16	1055	TY	GW	1	3			1	П	П	Х			-	1			1	1		
4 OSGP7 - GWD		2-11-16	1355	TT	GW	1	11	T	П	1	П	\sqcap	X		\neg	\neg	\neg	\neg	7	1	\top		1
	8			1			П																
							П	I	П	I	П										T		
				_	_		H	+	H	1	П	П			1	7	T	1	T	1	1	1	11
5 BPEB- 8		7-12-16	69.50	77	66	3	3	+	H	+	Н	H	x	-	+	+	+	+	+	+	+	+	1
GBPEB G		7-8-14	1230	T	68	-	9	†	П	†	Н	Ħ	X		\neg	╛	_	\neg	\top	\top	1	$\overline{}$	
7 BREB - 7	3.5	9-11-1	Action Control of			dia.	17	1		1	Ş 2	/AY	$\overline{\mathbf{x}}$	Pi		显.	5011	59	# 7	38	416	9213	2 8 E S
9 18071216		G-23-4		198	TH.		2		Ħ	4 9	200	1	77	1		42	4		5	2		名工	
Terrestand Time (Business Street)	A STATE OF			DUAC!		Date	Deb	water	i Irda		a	-9.7	1	1	al de	Serie	230	Camera	en i Se	ucia t	nijed	me 1	
Std. 16 Statisman (Loye Std. 10 Statisman (Loye)	Approved By \$6400	rtent Philip / Craires			Cammun Cammun						YABP (Yabb (1									
18 Day Ruths				000	nun	Livel					tale Fee					00-150	y		2000	-000-	olec 8		
S Day AUGH					ILJ Podu Commer						00 fe			- 5	ATHY 70	port 10	enzen	A MIN	t, and	WIT-A	myi Ai	conce	
2 Day EMEMBERICY				اسا		C	chil "A"	- Res			-											(C. 90)	
1 Day Englishery Company & Book Th. page products MA Letters						HJ Reds							-	_ [
ALL THE THE THE THE THE THE THE THE		mple Contacty o	end he draw	norted h	elow ear										othery			1	W. C.				
7/2/1/20 7/12	16 1700	The bearing light	FX				7		al Obje		F	×				ma Thu		1	7	_	1	_ =	2/12/4-
Date Time .		Resident Sy:					1		d Dy:	_		/-			٦,	on The		- #	67 . V				11-11/10
Refrequished by: Opto Times		3 Reterred By:					4 Cum	ody be	el B	_		0	meet	-		1000	طوطوية	. [4			De las	4 54	
		5					1	- 2		5	*		Phil Print	e .			٠, ٠,		-		0	1 "	7.9

FA35362: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

FA35362

Laboratory:

Accutest, Florida

Analysis:

SW846-8260C

Number of Samples:

Location:

BMSMC - Building 5 Area

Humacao, PR

SUMMARY:

Ten (10) samples were analyzed for volatile organic compounds (VOCs) by method SW846-8260C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. All samples analyzed within method recommended holding time except the cases described in the Data Review Worksheet. Sample FA35362-8 was a trip blank received and analyzed outside holding time. No action taken, the sample is a trip blank. Samples

properly preserved.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

Rafael Jafant

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: FA35362-1

Sample location: BMSMC Building 5 Area

Sampling date: 7/8/2016 Matrix: Groundwater

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	10.1	ug/l	1.0	-	-	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	υ	Yes

Sample ID: FA35362-2

Sample location: BMSMC Building 5 Area

Sampling date: 7/8/2016 Matrix: Groundwater

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	0.28	ug/l	1.0	j	J	Yes
Methyl Tert Butyl Ether	9.4	ug/l	1.0	-	-	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	U	Yes

Sample ID: FA35362-3

Sample location: BMSMC Building 5 Area

Sampling date: 7/11/2016 Matrix: Groundwater

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	6.8	ug/l	1.0	-	-	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	U	Yes

Sample ID: FA35362-4

Sample location: BMSMC Building 5 Area

Sampling date: 7/11/2016 Matrix: Groundwater

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/l	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	U	Yes

Sample ID: FA35362-5

Sample location: BMSMC Building 5 Area

Sampling date: 7/12/2016

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/l	1.0	•	U	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	U	Yes

Sample ID: FA35362-6

Sample location: BMSMC Building 5 Area

Sampling date: 7/8/2016

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/l	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	Ų	Yes

Sample ID: FA35362-7

Sample location: BMSMC Building 5 Area

Sampling date: 7/11/2016

Matrix: AQ - Equipment Blank

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/l	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	U	Yes

Sample ID: FA35362-8

Sample location: BMSMC Building 5 Area

Sampling date: 6/27/2016 Matrix: AQ - Trip Blank

METHOD: 8260C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Benzene	1.0	ug/l	1.0	-	U	Yes
Methyl Tert Butyl Ether	1.0	ug/l	1.0	-	U	Yes
Tert-Amyl Alcohol	20	ug/l	1.0	-	U	Yes

Project Num!	per:_FA35362
Date:	June_27July_12,_2016
Shipping date	e:July_12,_2016
EPA Region:	2

REVIEW OF VOLATILE ORGANIC PACKAGE Low/Medium Volatile Data Validation

The following guidelines for evaluating volatile organics were created to delineate required validation actions. This document will assist the reviewer in using professional judgment to make more informed decision and in better serving the needs of the data users. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: USEPA Hazardous Waste Support Section SOP No. HW-33A Revision 0 SOM02.2. Low/Medium Volatile Data Validation. July, 2015. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

listed on the data review worksheets are from the prinoted.	
The hardcopied (laboratory name)Accutest been reviewed and the quality control and performance included:	data package received has data summarized. The data review for VOCs
Lab. Project/SDG No.:FA35362 No. of Samples: 8	Sample matrix:Groundwater
Equipment blank No.:FA35362-5;_FA35362-6 Field duplicate No.:	;_FA35362-7
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate _OverallComments:VOA_TCL_list_(SW846_8260C) _Sample_FA35362-8_(trip_blank)_is_dated_06/27/16	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data	
UJ- Estimated nondetect Reviewer: Date:July_23,_2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
	— — — 1223 —	
	<u> </u>	
	<u> </u>	
		19739 <u>19 19 18 19 29 79</u>
		1

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pH	ACTION
FA35362-8	06/27/16	07/14/16	2	No action
				the cases described in this
	e FA35362-8 was a ti Ink. Samples properl		ae nolain	g time. No action taken, the
		7		
				- 1555

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4 \pm 2°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles.

Soil samples- 14 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): 2.9° C - OK

Actions

Aqueous samples

- a. If there is no evidence that the samples were properly preserved (pH < 2, $T = 4^{\circ}C \pm 2^{\circ}C$), but the samples were analyzed within the technical holding time [7 days from sample collection], no qualification of the data is necessary.
- b. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [7 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- c. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).
- e. If air bubbles were present in the sample vial used for analysis, qualify detected compounds as estimated (UJ).

Non-aqueous samples

- a. If there is no evidence that the samples were properly preserved ($T < -7^{\circ}C$ or $T = 4^{\circ}C \pm 2^{\circ}C$ and preserved with NaHSO₄), but the samples were analyzed within the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as (UJ) or unusable (R) using professional judgment.
- b. If the samples were properly preserved, and the samples were analyzed within the technical holding time [14 days from sample collection], no qualification of the data is necessary.
- c. If there is no evidence that the samples were properly preserved, and the samples were analyzed outside of the technical holding time [14 days from sample collection], qualify detects for all volatile compounds as estimated (J) and non-detects as unusable (R).
- d. If the samples were properly preserved, but were analyzed outside of the technical holding time [14 days from sample collection], qualify detects as estimated (J) and non-detects as unusable (R).

Qualify TCLP/SPLP samples

- a. If the TCLP/SPLP ZHE procedure is performed within the extraction technical holding time of 14 days, detects and non-detects should not be qualified.
- b. If the TCLP/SPLP ZHE procedure is performed outside the extraction technical holding time of 14 days, qualify detects as estimated (J) and non-detects as unusable (R).
- c. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed within the technical holding time of 7 days, detects and non-detects should not be qualified.
- d. If TCLP/SPLP aqueous samples and TCLP/SPLP leachate samples are analyzed outside of the technical holding time of 7 days, qualify detects as estimated (J) and non-detects as unusable (R).

Table 1. Holding Time Actions for Low/Medium Volatile Analyses - Summary

		Criteria	Action		
Matrix	Preserved		Detected Associated Compounds	Non-Detected Associated Compounds	
	No	≤ 7 days	No qualification		
	No	> 7 days	J	R	
Aqueous	Yes	≤ 14 days	No q	ualification	
	Yes	> 14 days	J	R	
	No	≤ 14 days	J	Professional judgment, UJ or R	
Non-Aqueous	Yes	≤ 14 days	No qualification		
	Yes/No	> 14 days	J	R	
TCLP/SPLP	Yes	≤ 14 days	No q	ualification	
TCLP/SPLP	No	> 14 days	J	R	

TCLP/SPLP	ZHE performed within the 14-day technical holding time	No qualification	
TCLP/SPLP	ZHE performed outside the 14-day technical holding time	J R	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed within 7 days	No qualification	
TCLP/SPLP aqueous & TCLP/SPLP leachate	Analyzed outside 7 days	J	R
Sample tempera upon receipt at t	ture outside 4°C ± 2°C he laboratory	Use professional judgment	
	Holding times grossly exceeded		R

All criteria were met	X
Criteria were not met see below _	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

__X___The BFB performance results were reviewed and found to be within the specified criteria.

__X___ BFB tuning was performed for every 12 hours of sample analysis.

NOTES: All mass spectrometer instrument conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortions for the sole purpose of meeting the method specifications are contrary to the Quality Assurance (QA) objectives, and are

therefore unacceptable.

NOTES: No data should be qualified based on BFB failure. Instances of this should be noted in the narrative.

All ion abundance ratios must be normalized to m/z 95, the nominal base peak, even though the ion abundance of m/z 174 may be up to 120% that of m/z 95.

Actions:

If samples are analyzed without a preceding valid instrument performance check, qualify all data in those samples as unusable (R).

If ion abundance criteria are not met, professional judgment may be applied to determine to what extent the data may be utilized. When applying professional judgment to this topic, the most important factors to consider are the empirical results that are relatively insensitive to location on the chromatographic profile and the type of instrumentation. Therefore, the critical ion abundance criteria for BFB are the m/z 95/96, 174/175, 174/176, and 176/177 ratios. The relative abundances of m/z 50 and 75 are of lower importance. This issue is more critical for Tentatively Identified Compounds (TICs) than for target analytes.

Note: State in the Data Review Narrative, decisions to use analytical data associated with BFB instrument performance checks not meeting contract requirements.

Note: Verify that that instrument instrument performance check criteria were achieved using techniques described in Low/Medium Volatiles Organic Analysis, Section II.D.5 of the SOM02.2 NFG, obtain additional information on the instrument performance checks. Make sure that background subtraction was performed from the BFB peak and not from background subtracting from the solvent front or from another region of the chromatogram.

Use professional judgment to determine whether associated data should be qualified based on the spectrum of the mass calibration compound.			
List	the	samples	affected:
If mass calibration	on is in error, all associated d	ata are rejected.	

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:07/12/16	
Dates of continuing (initial) calibration:_	_07/12/16
Dates of continuing calibration:	_0712/16
Dates of ending calibration:	07/14/16;_07/14/16
Instrument ID numbers:	GCMSJ
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED

Note: Initial calibration, initial calibration verification, and continuing calibration verification within the method and validation guidance document required performance criteria. Closing calibration check verification included in data package.

Criteria

The analyte calibration criteria in the following Table must be obtained. Analytes not meeting the criteria are qualified.

A separate worksheet should be filled for each initial curve

Initial Calibration - Table 2. RRF, %RSD, and %D Acceptance Criteria for Initial Calibration and CCV for Low/Medium Volatile Analysis

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum %D
Dichlorodifluoromethane	0.010	25.0	±40.0	±50.0
Chloromethane	0.010	20.0	±30.0	±50.0
Vinyl chloride	0.010	20.0	±25.0	±50.0
Bromomethane	0.010	40.0	±30.0	±50.0
Chloroethane	0.010	40.0	±25.0	±50.0
Trichlorofluoromethane	0.010	40.0	±30.0	±50.0
1.1-Dichloroethene	0.060	20.0	±20.0	±25.0
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	25.0	±25.0	±50.0
Acetone	0.010	40.0	±40.0	±50.0
Carbon disulfide	0.100	20.0	±25.0	±25.0
Methyl acetate	0.010	40.0	±40.0	±50.0
Methylene chloride	0.010	40.0	±30.0	±50.0
trans-1.2-Dichloroethene	0.100	20.0	±20.0	±25.0
Methyl tert-butyl ether	0.100	40.0	±25.0	±50.0
1,1-Dichloroethane	0.300	20.0	±20.0	±25.0
cis-1,2-Dichloroethene	0.200	20.0	±20.0	±25.0
2-Butanone	0.010	40.0	±40.0	±50.0
Bromochloromethane	0.100	20.0	±20.0	±25.0
Chloroform	0.300	20.0	±20.0	±25.0
1,1,1-Trichloroethane	0.050	20.0	±25.0	±25.0
Cyclohexane	0.010	40.0	±25.0	±50.0
Carbon tetrachloride	0.100	20.0	±25.0	±25.0
Benzene	0.200	20.0	±20.0	±25.0
1,2-Dichloroethane	0.070	20.0	±20.0	±25.0
Trichloroethene	0.200	20.0	±20.0	±25.0
Methylcyclohexane	0.050	40.0	±25.0	±50.0
1,2-Dichloropropane	0.200	20.0	±20.0	±25.0
Bromodichloromethane	0.300	20.0	±20.0	±25.0
cis-1,3-Dichloropropene	0.300	20.0	±20.0	±25.0
4-Methyl-2-pentanone	0.030	25.0	±30.0	±50.0
Toluene	0.300	20.0	±20.0	±25.0
trans-1,3-Dichloropropene	0.200	20.0	±20.0	±25.0
1,1,2-Trichloroethane	0.200	20.0	±20.0	±25.0
Tetrachloroethene	0.100	20.0	±20.0	±25.0
2-Hexanone	0.010	40.0	±40.0	±50.0
Dibromochloromethane	0.200	20.0	±20.0	±25.0
1.2-Dibromoethane	0.200	20.0	±20.0	±25.0
Chlorobenzene	0.400	20.0	±20.0	±25.0
Ethylbenzene	0.400	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Closing Maximum
ni.p-Xylene	0.200	20.0	±20.0	±25.0
o-Xylene	0.200	20.0	±20.0	±25.0
Styrene	0.200	20.0	±20.0	±25.0
Bromoform	0.100	20.0	±25.0	±50.0
Isopropylbenzene	0.400	20.0	±25.0	±25.0
1,1,2,2-Tetrachloroethane	0.200	20.0	±25.0	±25.0
1,3-Dichlorobenzene	0.500	20.0	±20.0	±25.0
1,4-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dichlorobenzene	0.600	20.0	±20.0	±25.0
1,2-Dibromo-3-chloropropane	0.010	25.0	±30.0	±50.0
1,2,4-Trichlorobenzene	0.400	20.0	±30.0	±50.0
1.2.3-Trichlorobenzene	0.400	25.0	±30.0	±50.0
Deuterated Monitoring Compound	d			
Vinyl chloride-d3	0.010	20.0	±30.0	±50.0
Chloroethane-ds	0.010	40.0	±30.0	±50.0
1,1-Dichloroethene-d2	0.050	20.0	±25.0	±25.0
2-Butanone-ds	0.010	40.0	±40.0	±50.0
Chloroform-d	0.300	20.0	±20.0	±25.0
1.2-Dichloroethane-d4	0.060	20.0	±25.0	±25.0
Benzene-da	0.300	20.0	±20.0	±25.0
1,2-Dichloropropane-do	0.200	20.0	±20.0	±25.0
Toluene-ds	0.300	20.0	±20.0	±25.0
trans-1.3-Dichloropropene-da	0.200	20.0	±20.0	±25.0
2-Hexanone-ds	0.010	40.0	±40.0	±50.0
1,1,2,2-Tetrachloroethane-da	0.200	20.0	±25.0	±25.0
1,2-Dichlorobenzene-d4	0.400	20.0	±20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes and DMCs must meet the requirements for an opening CCV.

Actions:

- 1. If any volatile target compound has an RRF value less than the minimum in the table, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J+ or R).
 - a. If any volatile target compound has an RRF value less than the minimum criterion, qualify non-detected compounds as unusable (R).
 - b. If any of the volatile target compounds listed in the Table has %RSD greater than the criteria, qualify detects as estimated (J), and non-detected compounds using professional judgment.
 - c. If the volatile target compounds meet the acceptance criteria for RRF and the %RSD, no qualification of the data is necessary.

- d. No qualification of the data is necessary on the DMC RRF and %RSD data alone. Use professional judgment and follow the guidelines in Action 2 to evaluate the DMC RRF and %RSD data in conjunction with the DMC recoveries to determine the need for qualification of data.
- 2. At the reviewer's discretion, and based on the project-specific Data Quality Objectives (DQOs), a more in-depth review may be considered using the following guidelines:
 - a. If any volatile target compound has a %RSD greater than the maximum criterion in the Table, and if eliminating either the high or the low-point of the curve does not restore the %RSD to less than or equal to the required maximum:
 - Qualify detects for that compound(s) as estimated (J).
 - ii. Qualify non-detected volatile target compounds using professional iudgment.
 - b. If the high-point of the curve is outside of the linearity criteria (e.g., due to saturation):
 - i. Qualify detects outside of the linear portion of the curve as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. No qualifiers are required for volatile target compounds that were not detected.
 - c. If the low-point of the curve is outside of the linearity criteria:
 - i. Qualify low-level detects in the area of non-linearity as estimated (J).
 - ii. No qualifiers are required for detects in the linear portion of the curve.
 - iii. For non-detected volatile compounds, use the lowest point of the linear portion of the curve to determine the new quantitation limit.

Note: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for the Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Initial Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria	Action		
Criteria	Detect	Non-detect	
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R	
Initial Calibration not performed at the specified concentrations	J	נט	
RRF = Minimum RRF in Table for target analyte	Use professional judgment J+ or R	R	
RRF > Minimum RRF in Table for target analyte	No qualification	No qualification	
*•RSD > Maximum *•RSD in Table for target analyte	J	Use professional judgment	
%RSD ≤ Maximum %RSD in Table for target analyte	No qualification	No qualification	

All criteria were met _X
Criteria were not met
and/or see below

Continuing Calibration Verification (CCV)

NOTE: Verify that the CCV was run at the required frequency (an opening and closing CCV must be run within 12-hour period) and the CCV was compared to the correct initial calibration. If the mid-point standard from the initial calibration is used as an opening CCV, verify that the result (RRF) of the mid-point standard was compared to the average RRF from the correct initial calibration.

The closing CCV used to bracket the end of a 12-hour analytical sequence may be used as the opening CCV for the new 12-hour analytical sequence, provided that all the technical acceptance criteria are met for an opening CCV (see criteria show before in the Table). If the closing CCV does not meet the technical acceptance criteria for an opening CCV, then a BFB tune followed by an opening CCV is required and the next 12-hour time period begins with the BFB tune.

All DMCs must meet RRF criteria. No qualification of the data is necessary on the DMCs RRF and %RSD/%D data alone. However, use professional judgment to evaluate the DMC and %RSD/%D data in conjunction with the DMC recoveries to determine the need of qualification the data.

Action:

- 1. If a CCV (opening and closing) was not run at the appropriate frequency, qualify data using professional judgment.
- 2. Qualify all volatile target compounds in Table shown before using the following criteria:
 - a. For an opening CCV, if any volatile target compound has an RRF value less than the minimum criterion, use professional judgment for detects, based on mass spectral identification, to qualify the data as estimated (J) and qualify non-detected compounds as unusable (R).
 - b. For a closing CCV, if any volatile target compound has an RRF value less than the criteria, use professional judgment for detects based on mass spectral identification to qualify the data as estimated (J), and qualify non-detected compounds as unusable (R).
 - c. For an opening CCV, if the Percent Difference value for any of the volatile target compounds is outside the limits in calibration criteria Table shown before, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - d. For a closing CCV, if the Percent Difference value for any volatile target compound is outside the limits in calibration criteria table, qualify detects as estimated (J) and non-detected compounds as estimated (UJ).
 - e. If the volatile target compounds meet the acceptable criteria for RRF and the Percent Difference, no qualification of the data is necessary.

f. No qualification of the data is necessary on the DMC RRF and the Percent Difference data alone. Use professional judgment to evaluate the DMC RRF and Percent Difference data in conjunction with the DMC recoveries to determine the need for qualification of data.

Notes: If the laboratory has failed to provide adequate calibration information, inform the Region's designated representative to contact the laboratory and request the necessary information. If the information is not available, the reviewer must use professional judgment to assess the data.

State in the Data Review Narrative, if possible, the potential effects on the data due to calibration criteria exceedance.

Note, for Contract Laboratory COR action, if calibration criteria are grossly exceeded.

Table. Continuing Calibration Actions for Low/Medium Volatile Analysis – Summary

Criteria for Opening	Criteria for	Action	
CCV	Closing CCV	Detect	Non-detect
CCV not performed	CCV not performed	Use professional	Use professional
at required frequency	at required	judgment	judgment
	frequency	R	R
CCV not performed	CCV not performed	Use professional	Use professional
at specified	at specified	judgment	judgment
concentration	concentration		
RRF < Minimum	RRF < Minimum	Use professional	R
RRF in Table 2 for	RRF in Table for	judgment	
target analyte	target analyte	J or R	
RRF = Minimum	RRF ≥ Minimum	No qualification	No qualification
RRF in Table 2 for	RRF in Table for		
target analyte	target analyte		
%D outside the	%D outside the	J	UJ
Opening Maximum	Closing Maximum		
° D limits in Table 2	%D limuts in Table		
for target analyte	for target analyte		
%D within the	%D within the	No qualification	No qualification
inclusive Opening	inclusive Closing		
Maximum %D limits	Maximum %D		
in Table 2 for target	limits in Table for		
analyte	target analyte		

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

The concentration of a target analyte in any blank must not exceed its Contract Required Quantitation Limit (CRQL) (2x CRQLs for Methylene chloride, Acetone, and 2-Butanone). TIC concentration in any blanks must be $\leq 5.0 \,\mu\text{g/L}$ for water (0.0050 mg/L for TCLP leachate) and $\leq 5.0 \,\mu\text{g/kg}$ for soil matrices.

Laboratory blanks

The method blank, like any other sample in the SDG, must meet the technical acceptance criteria for sample analysis.

DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
				
Field/ <u>Equipme</u>	nt/Trip blank			
If field or trip bitthe method blas		nt, the data revi	ewer should evaluate thi	is data in a similar fashion a
DATE ANALYZED	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
	• —		ipment_blanksNo_field	_blank_analyzed_with_this
· · · · · · · · · · · · · · · · · · ·				

All criteria were metX
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Note:

All fields blank results associated with a particular group of samples (may exceed one per case) must be used to qualify data. Trip blanks are used to qualify only those samples with which they were shipped. Blanks may not be qualified because of contamination in another blank. Field blanks and trip blanks must be qualified for system monitoring compounds, instrument performance criteria, and spectral or calibration QC problems.

Samples taken from a drinking water tap do not have associated field blanks.

When applied as described in the Table below, the contaminant concentration in the blank is multiplied by the sample dilution factor.

Table. Blank and TCLP/SPLP LEB Actions for Low/Medium Volatile Analysis

Blank Type	Blank Result	Sample Result	Action for Samples	
	Detects	Not detected	No qualification required	
	< CRQL *	< CRQL*	Report CRQL value with a U	
		≥ CRQL*	No qualification required	
Method,		< CRQL*	Report CRQL value with a U	
Storage, Field,	> CRQL *	≥ CRQL* and ≤	Report blank value for sample	
Trip, TCLP/SPLP LEB.		blank concentration	concentration with a U	
		≥ CRQL* and >	No qualification required	
		blank concentration	110 quanneauon required	
Instrument**	= CRQL*	≤ CRQL*	Report CRQL value with a U	
	- CRQL	> CRQL*	No qualification required	
	Gross	Detects	Report blank value for sample	
	contamination	Detects	concentration with a U	

^{* 2}x the CRQL for methylene chloride, 2-butanone and acetone.

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

^{**} Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 µg/L.

Notes:

High and low level blanks must be treated separately Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					A STATE OF THE PARTY OF THE PAR
				3	
				and the	
			-53	1	
		- 4			
	and a				
	and and				
- All Control of the	Ī				

All criteria were met _X
Criteria were not met
and/or see below

DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike (DMCs) recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Table. Volatile Deuterated Monitoring Compounds (DMCs) and Recovery Limits

DMC	%R for Water Sample	%R for Soil Sample
Vinyl chloride-d3	60-135	30-150
Chloroethane-d5	70-130	30-150
1,1-Dichloroethene-d2	60-125	45-110
2-Butanone-d5	40-130	20-135
Chloroform-d	70-125	40-150
1,2-Dichloroethane-d4	70-125	70-130
Benzene-d6	70-125	20-135
1,2-Dichloropropane-d6	70-120	70-120
Toluene-d8	80-120	30-130
trans-1,3-	60-125	30-135
Dichloropropene-d4		
2-Hexanone-d5	45-130	20-135
1,1,2,2-	65-120	45-120
Tetrachloroethane-d2		
1,2-Dichlorobenzene-d4	80-120	75-120

NOTE: The recovery limits for any of the compounds listed in the above Table may be expanded at any time during the period of performance if the United States Environmental Protection Agency (EPA) determines that the limits are too restrictive.

Action:

Are recoveries for DMCs in volatile samples and blanks must be within the limits specified in the Table above.

Yes? or No?

NOTE: The recovery limits for any of the compounds listed in the Table above may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

List the DMCs that may fail to meet the recovery limits

Sample ID	Date	DMCs	% Re	covery	Action
-		E 52			

DMCs recoveries within the required limits and within the guidance document performance criteria (80 - 120). Other non-deuterated surrogates added to the samples within laboratory control limits.

Note: Any sample which has more than 3 DMCs outside the limits must be reanalyzed.

Action:

- 1. For any recovery greater than the upper acceptance limit.
 - a. Qualify detected associated volatile target compounds as estimated high (J+).
 - b. Do not qualify non-detected associated volatile target compounds.
- 2. For any recovery greater than or equal to 10%, and less than the lower acceptance limit:
 - a. Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as estimated (UJ).
- 3. For any recovery less than 10%:
 - Qualify detected associated volatile target compounds as estimated low (J-).
 - b. Qualify non-detected associated volatile target compounds as unusable (R).
- 4. For any recovery within acceptance limits, no qualification of the data is necessary.
- In the special case of a blank analysis having DMCs out of specification, the reviewer must give special consideration to the validity of associated sample data. The basic concern is whether the blank problems represent an isolated problem with the blank alone, or whether there is a fundamental problem with the analytical process. For example, if one or more samples in the batch show acceptable DMC recoveries, the reviewer may choose to consider the blank problem to be an isolated occurrence. However, even if this judgment allows some use of the affected data, note analytical problems for Contract Laboratory COR action.
- 6. If more than three DMCs are outside of the recovery limits for Low/Medium volatiles analysis and the sample was not reanalyzed, note under Contract Problems/Non-Compliance.

Table. Deuterated Monitoring Compound (DMC) Recovery Actions for Low/Medium Volatiles Analyses – Summary

	Action			
Criteria	Detect Associated Compounds	Non-detected Associated Compounds		
%R < 10%	J-	R		
10% ≤ %R < Lower Acceptance Limit	J-	UJ		
Lower Acceptance Limit $\leq 96R \leq Upper$ Acceptance Limit	No qualification	No qualification		
%R > Upper Acceptance Limit	J+:	No qualification		

TABLE. VOLATILE DEUTERATED MONITORING COMPOUNDS (DMCs) AND THE ASSOCIATED TARGET COMPOUNDS

Vinyl chloride-ds (DMC-1)	Chloroethane-ds (DMC-2)	1,1-Dichloroethene-d2 (DMC-3)
Vinyl chloride	Dichlorodifluoromethane Chloromethane Bromomethane Chloroethane Carbon disulfide	trans-1,2-Dichloroethene cis-1,2-Dichloroethene 1,1-Dichloroethene
2-Butanone-ds (DMC-4)	Chloroform-d (DMC-5)	1,2-Dichloroethane-d4 (DMC-6)
Acetone 2-Butanone	I,l-Dichloroethane Bromochloromethane Chloroform Dibromochloromethane Bromoform	Trichlorofluoromethane 1.1.2-Trichloro-1.2.2-trifluoroethane Methyl acetate Methyl-tert-butyl ether 1.1.1-Trichloroethane Carbon tetrachloride 1.2-Dibromoethane 1.2-Dichloroethane
Benzene-d4 (DMC-7)	1,2-Dichloropropane-ds (DMC-8)	Toluene-ds (DMC-9)
Benzene	Cyclohexane Methylcyclohexane 1,2-Dichloropropane Bromodichloromethane	Trichloroethene Toluene Tetrachloroethene Ethylbenzene o-Xylene m.p-Xylene Styrene Isopropylbenzene
trans-1,3-Dichloropropene-d. (DMC-10)	2-Hexanone-ds (DMC-11)	1,1,2,2-Tetrachloroethane-d: (DMC-12)
cis-1,3-Dichloropropene trans-1,3-Dichloropropene 1,1,2-Trichloroethane	4-Methyl-2-pentanone 2-Hexanone	1,1,2,2,-Tetrachloroethane 1,2-Dibromo-3-chloropropane
1,2-Dichlorobenzene-da (DMC-13) Chlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene 1,2,3-Trichlorobenzene		

All criteria were metX
Criteria were not met
and/or see below

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:_FA35362-1MS/1MSD				Matrix/Level:Aqueous						
The QC reported here applies to the following samples: Method: SW846 8260C FA35362-1, FA35362-2, FA35362-3, FA35362-4, FA35362-5; FA35362-6, FA35362-7, FA35362-8								2-8		
Compound	FA353 ug/l	62-1 Q	Spike ug/i	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD

Note: MS/MSD % recoveries and RPD within laboratory control limits.

Note:

* QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

* If QC limits are not available, use limits of 70 – 130 %.

Actions:

1. No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX
Criteria were not met
and/or see below

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? **Yes** or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

Recoveries(blank_spike)_within_laboratory_control_limits							
_							

Note:

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were met Criteria were not met and/or see belowN/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. Use professional judgment to note large RPDs (> 50%) in the narrative.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION		
	-						
No field/laboratory duplicate analyzed with this data package. MS/MSD % recoveries RPD used to assess precision. RPD within required criteria, ≤ 50 % for target analytes detected at concentration > 5x the SQL or the reporting in sample and duplicate.							

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions are suggested based on professional judgment:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.